Induction of oxidative stress related responses in Arabidopsis thaliana following uranium exposure
نویسندگان
چکیده
The reactive oxygen species (ROS)-signaling pathway is very important in heavy metal toxicity. Induction of the antioxidative defense mechanism, comprising ROS-scavenging enzymes and metabolites, in plants after environmental uranium contamination has been insufficiently studied in the past. This study aimed to analyze oxidative stress related responses in Arabidopsis thaliana after uranium exposure. Seventeen-day-old seedlings were exposed to 0, 0.1, 1, 10 and 100 Muranium for 3 days. After exposure to 100 M uranium, a decrease in fresh weight for leaves and roots was observed, leaves colored anthocyanous and roots were stunted and yellow. To reveal the importance of oxidative stress in uranium toxicity, alterations in ROS-scavenging enzymes were studied at protein and transcriptional level. Superoxide dismutase (SOD) capacities increased in leaves and roots after exposure to 100 M uranium but no differences were observed for catalase (CAT) capacities. Transcript levels of different SODs located at various cellular compartments were affected depending on the place of action. Gene expression of CAT in leaves and roots was also affected after uranium exposure. Results indicate that oxidative stress plays an important role in uranium toxicity but suggest that plant responses differ for leaves and roots.
منابع مشابه
Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5
To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to differen...
متن کاملThe association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana.
The identification and analysis of genes exhibiting large expression responses to several different types of stress may provide insights into the functional basis of multiple stress tolerance in plant species. This study considered whole-genome transcriptional profiles from Arabidopsis thaliana root and shoot organs under nine abiotic stress conditions (cold, osmotic stress, salt, drought, geno...
متن کاملNatural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana.
BACKGROUND Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. METHODS Availab...
متن کاملEffect of low-dose chronic gamma exposure on growth and oxidative stress related responses in Arabidopsis thaliana
The biological responses induced by low-dose chronic gamma exposure of hydroponically grown Arabidopsis thaliana, irradiated during a full life cycle (seed to seed) were investigated. Applied dose rates were 2300, 375 and 85 Gray h−1. Plants (roots and shoots) were harvested after 24 day (inflorescence emergence), at 34 days (∼50% of flowers open) and at 54 days (silice ripening). Gamma exposur...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کامل